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Abstract
The recognition of smart home devices within WiFi environments stands as a pivotal focus within contemporary Internet of
Things (IoT) security, especially in the context of Futuristic Smart Networks-based IoT. The inherent encryption feature of the
802.11 protocol in WiFi settings renders conventional identification methods, reliant on plaintext traffic patterns, ineffective
for IoT devices. Through an examination of the 802.11 protocol, distinctive traits within data frames of various smart home
devices are revealed. Building on these insights, this research selects attributes like frame length, frame arrival time, duration,
and frame sequence number as salient traffic characteristics. Leveraging an enhanced decision tree CART algorithm, the study
achieves robust device identification for smart home devices operating within WiFi environments. Experimental outcomes
affirm themethod’s efficacy by accurately discerning devicemodels, achieving an impressive identification accuracy of 91.3%.

Keywords Device identification · WiFi environments · Futuristic smart networks · IoT Security · Smart home devices ·
Traffic characteristics
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1 Introduction

The Internet of Things (IoT) has become an important com-
ponent of the new generation of information technology,
with widespread applications in various fields such as smart
homes, intelligent healthcare, and smart cities. The quantity
and variety of IoT devices have grown exponentially due to
increasing market demand. It is projected that by the year
2025, there will be over 75 billion IoT devices connected to
the Internet [1], and this number is expected to reach 125
billion by 2030 [2]. Presently, due to the advantages of wide
wireless network coverage, strong mobility, and low con-
struction costs, a large number of IoT devices are connected
via WiFi networks. Especially in the case of smart home
devices, connecting to WiFi allows for quick information
exchange between devices, enhancing convenience in daily
life.

Most of the research on IoT device identification is based
on extracting traffic features at the TCP/IP layers. Author [3]
extracted 23 features including protocols, packet sizes, IP
addresses, and port numbers from different network layers.
Author [4] identified devices by extracting 67 characteristics
such as TTL and TCP window size from packet sequences.
Thesemethods utilize privileged access to router and network
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protocol headers, enabling the extraction of a wide range of
protocol feature fields. However, in unfamiliarWiFi environ-
ments, the captured traffic consists of encrypted link layer
data based on the 802.11 protocol. Among the fastest grow-
ing segments of the communications sector today is 802.11g
WLAN technology. Naturally, it does this without a net-
work cable and offers constant network access.Workers from
home or those who work remotely can build up networks
without worrying about how to put cables through homes that
were not intended to accommodate network equipment. A
collection of specifications knownas 802.11 covers computer
communications overwireless local area networks (WLANs)
operating in the 2.4, 3.6, and 5 GHz bands. For big enter-
prise wireless systems and household wireless access points,
the most popular standards are 802.11a, b, and g. With data
transmission rates of up to 54 Mbps, 802.11a is faster than
802.11b. A privacy mechanism called WEP is defined in
802.11 to safeguard connection data that is sent via WLAN.
This speaks to the intention of giving wireless LAN users a
privacy service likewhat a traditional LAN’s built-in physical
security offers. TheRC4 symmetric streamcipherwith 40-bit
and 104-bit encryption keys is used for the WEP encryp-
tion. The 802.11 standard does not specify 104-bit encryption
keys. However, several wireless AP manufacturers do sup-
port them.

Extracting specific fields of IP layers and above is chal-
lenging in such cases. Moreover, stability and interference
resistance of data transmission in WiFi environments are
weak, leading to significant difficulties in device identifi-
cation. Currently, research on device identification in WiFi
environments is relatively limited. Author [5] analyzed the
duration field in 802.11 traffic for device identification author
[6] used encryptedWiFi traffic’s destination address, network
name, frame size, and MAC protocol fields as implicit iden-
tifiers for wireless devices. Author [7] differentiated devices
through temporal analysis of 802.11 probe request frames.
Author [8] evaluated features like transmission rate, frame
size, media access time, transmission time, and inter-frame
arrival time in 802.11 traffic, with transmission time and
inter-frame arrival time proving most effective. The author
[9] utilized similar hashing algorithms to generate device
fingerprints for 802.11 management frames. Author [10]
transformed traffic from IoT devices in wireless networks
into traffic grayscale images for identification experiments.
Given the limited information obtainable from WiFi-based
traffic, effectively identifying IoTdevices in this environment
remains a challenging aspect that requires further research.

Most IoT device identification algorithms primarily
employ machine learning techniques, constructing classi-
fication models based on feature attributes extracted from
network traffic. Author [3] utilized a random forest algorithm
to identify devices using a 23×N feature matrix. The author
[11] generated feature vectorswith features likeTCPwindow

size and payload length and employed a gradient boost-
ing tree algorithm for identification. The author [12] used
the J48 decision tree algorithm to identify 23 IoT devices.
Author [13] compared identification algorithms including
random forest, k-nearest neighbors (KNN), decision tree
(DT), and support vector machine (SVM), concluding that
random forest and decision tree algorithms excel in recog-
nition rate and speed, respectively. The author [14] used a
naive Bayesian optimization algorithm and clustering algo-
rithm for IoT device and non-IoT device identification.

Author [15] employedKNNfor identifying 22 IoTdevices
based on features like average packet length, average arrival
time, and packet length. The author [16] utilized an SVM
algorithm for IoT device identification using various proto-
col features and device-specific attributes. Based on existing
research, this paper further investigates link layer traffic fea-
tures of the 802.11 standard under IoT environments by
monitoring smart home device traffic under WiFi and using
machine learning algorithms for device identification.

However, as the heterogeneous smart home devices con-
nected to WiFi networks rapidly increase, the resulting
wireless encrypted traffic becomes increasingly complex and
chaotic. This leads to the growth of network complexity
and scale, making the management of smart home devices
more intricate. Additionally, since smart home devices often
transmit sensory information and user privacy data, they are
susceptible to attacks, thereby posing a serious threat to the
security and privacy of IoT systems. Therefore, achieving
smart home device identification in WiFi environments is
currently a prominent area of research. Device identifica-
tion methods can associate information about IoT devices,
users, functionalities, and datawithin the network space. This
aids in situational analysis, event tracing, and targeted con-
trol of these devices, thereby holding significant importance
in addressing the management and security issues of smart
home devices.

The Internet of Things (IoT) has become increasingly sig-
nificant in the dynamic field of information technology, as it
has made its presence felt in several sectors such as smart
homes, healthcare, and urban environments. Given the antic-
ipated increase in the quantity of Internet of Things (IoT)
devices, it is imperative to explore effective methods for
device identification. The principal objective of this study
is to tackle the issue of discerning Internet of Things (IoT)
devices within wireless fidelity (WiFi) networks, with a spe-
cific emphasis on the complex smart home setting.

The work makes a valuable contribution by:

1. The objective of this study is to explore and provide
reliable methods for accurately identifying Internet of
Things (IoT) devices within WiFi networks.

2. This paper aims to examine the intricacies and security
concerns associated with smart home setups.
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3. Facilitating situational analysis andmonitoring of events.
4. Improving the administration and security of smart home

devices.

2 Related work

This extensive literature review explores a wide range of
advanced subjects encompassing smart buildings, the Inter-
net of Things (IoT), and related disciplines. The study
conducted by Ma et al. [17] focuses on the improvement
of job engagement in smart offices as a means to enhance
staff productivity. In their study, Huseien and Shah [18] con-
ducted a thorough examination of the incorporation of 5G
technology to enhance energy management and smart infras-
tructures, with a specific focus on the context of Singapore. In
this study, Khalil et al. [19] present an innovative approach to
nonintrusive occupant identification through the use of ultra-
sonic sensors. The primary objective of this method is to
enhance energy efficiency in smart buildings. In their study,
Malkawi et al. [20] provide a novel Internet of Things (IoT)
architecture that aims to improve data-driven operations and
experimentation in the context of smart buildings.

In the realm of healthcare, Gowda et al. [21] proposes
a novel integration of the Internet of Things (IoT) and fog
computing as a means to transform and enhance the deliv-
ery of high-quality industrial healthcare services. In their
study, Nauman et al. [22] explore the integration of cog-
nitive intelligence into post-5G networks, with a specific
focus on enhancing network efficiency at theMAC layer. The
authors Wirtz et al. [23] provide a valuable contribution by
developing a comprehensive public Internet of Things (IoT)
infrastructure specifically designed for the implementation of
intelligent governance applications. In their study, Lee et al.
[24] examine the experiences of Seoul and San Francisco to
derive significant insights that might inform the creation of
efficient frameworks for the development of smart cities.

In addition to the advancements in smart buildings and
the Internet of Things (IoT), Bai et al. [25] provide an exten-
sive overview of acoustic-based sensing applications. In their
study, Li et al. [26] examine the difficulties and potential
opportunities associatedwithmulti-user activity recognition.
Reduan and Jamil [27] provide a comprehensive evaluation
of application characteristics and traffic requirements within
the domain of smart grid communications. The study con-
ducted by Mumtaz et al. [28] focuses on the optimization of
energy consumption in smart direct-LTE networks. Rahhal
et al. [29] shed light on a common viewpoint about the health
of both humans and machines.

In their study, Woźniak et al. [30] propose a type-2 fuzzy
logic model to enhance driving support, thereby expanding
the existing range of approaches in this field. In their study,

Mohanty and Pani [31] propose a novel approach to livestock
healthmonitoring that utilizes neural networks enabledby the
Internet of Things (IoT). In their study, Raja andChakraborty
[32] introduce a wearable healthcare system that utilizes
Internet of Things (IoT) technology, specifically designed
to cater to healthcare needs in distant regions. In their study,
Raut et al. [33] provide a novel adaptive event detection sys-
tem designed specifically for streaming Internet of Things
(IoT) data. In their study, Sharma and Mehra [34] conducted
a comprehensive examination of the topic of secure commu-
nication within unmanned aerial vehicle (UAV) networks.

Zhao et al. [35] investigate the integration of the Internet
of Things (IoT) and digital twin technologies as a means
to increase safety management. Hou and Bergmann [36]
adeptly combine inertial navigation with neural networks.
In their study, Adarsh and Kumar [37] propose the use of
wireless medical sensor networks as a means to significantly
transform the field of e-healthcare. In his work, Nethercote
[38] critically examines the concept of platform landlords
and their role in exerting control over urban spaces within the
context of the digital era. The authors of the study conducted
by Lee et al. [39] examine the integration of artificial intelli-
gence (AI) in the healthcare sector for the older population. In
conclusion, Sampaio et al. [40] emphasize the significance
of autonomous energy management within the context of
Fog Computing. This comprehensive compilation enhances
our comprehension across several technological disciplines,
augmenting our understanding and ramifications.

Rani et al. [41] presented a voice-activated home automa-
tion system built on natural language processing (NLP) and
artificial intelligence methods. Voice instructions are sent
through a cell phone to operate household appliances, and
the preset natural language processing medium interprets the
commands. The system’s application was limited to control-
ling household appliances; it was not utilized for additional
home automation functions like environmental monitoring,
motion detection, intruder detection, or control. Jaihar et al.
[42] introduced an intelligent smart home automation system
that controls lighting, music systems, and other household
appliances by performing tasks based on the user’s emotional
state. To anticipate actions and reduce user engagement, sev-
eralmachine learning algorithmswere integrated and utilized
to assess the user’swants aswell as the environment.Depend-
ing on the mood that the machine learning model detects, the
house appliances are turned ON or OFF. Their methodology
improved domestic energy efficiency.

Khan et al. [43] suggested a real-time algorithm for house
monitoring and control, including ambient factors, motion
sensors, electrical appliances, and home appliances. The
motion sensors’ algorithmically derived inferences deter-
mined whether to turn on or off the lights. Using the WiFi
module, the suggested algorithm was also utilized to track
the power usage of different household appliances and to set
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off an alert depending on the gas pressure in the house. In
an experiment conducted by Popa et al. [44] with two deep
neural networkmodels for a smart home, anomalous patterns
of energy usage could be identified. A modular framework
for gathering, combining, and preserving data in the con-
text of smart homes was developed through the use of cloud
computing services. By using less energy, the authors demon-
strated how the recommended machine learning techniques
improved smart home automation.

The energy-saving strategy for equipment in a smart home
setting presented by Machorro-Cano et al. [45] makes use
of big data and machine learning approaches. Using meth-
ods to identify the home energy usage level by learning user
behavior and consumption patterns, the J48 machine learn-
ing algorithm and Weka API were used to assure the energy
efficiency of the system. Using a smartphone app called
HEMS-IoT that the authors created, the system recorded
and presented real-time data as well as suggestions for
energy-saving measures throughout the house. Their strat-
egy addressed home comfort and the safety of people and
gadgets in addition to conserving energy by enabling sys-
tem users to communicate with their houses and request the
necessary IoT service. Singh et al. [46] presented a smart
home automation system for managing electrical appliances,
and doors, and detecting activity in a house, in addition to
monitoring energy use in the home and delivering frequent
notifications about it. The device might also notify the user
if sensors detect low quantities of gas in a cylinder or the
presence of a human. An Arduino Uno board, a Node MCU
ESP8266, and IR and LDR sensor modules were used to
prototype the system.

3 Smart home identificationmethod based
onWiFi data frame features

This paper focuses on studying smart home devices such
as home cameras, smart doorbells, smart TVs, smart locks,
smart speakers, robotic vacuum cleaners, and smart gate-
ways. It proposes a smart home identification method based
onWiFi data frame features, with an overall process depicted
in Fig. 1. It consists of three steps: traffic collection, traffic
processing, and device identification. The traffic collection
module gathers traffic data in WiFi environments, the traf-
fic processing module filters, extracts features, and performs
feature subset analysis and representation for smart home
devices’ network traffic, and the device identificationmodule
trains the recognition model, implementing device identifi-
cation using an improved CART algorithm for decision trees.

Connecting commonplace equipment like sensors and
actuators for automation that are included in household appli-
ances is made possible by smart homes. The core of a smart
home is the convergence of several technological platforms,
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Fig. 1 WiFi data frame-based smart house identification technique

often involving three tiers: the application, network, and per-
ception layers. In addition to acting as an interface between
people and the linked items, the perception layer collects
information from the environment.Novel and pervasive sens-
ing approaches have been developed in response to the need
for an interface that is more user-friendly and pleasant. WiFi
sensing, whether active or passive, does away with the need
for physical touch by using invisible radio waves to feel the
environment. It causes no discomfort since it can do the sens-
ing functions without the user realizing it.

3.1 Data frame feature selection

Under WiFi, 802.11 data frames are divided into three types:
management frames, data frames, and control frames. Since
control frames have a simple structure and few extractable
valid features, and not all devices generate management
frames, which also lack universality in extracted features,
this paper selects data frame types with rich protocol field
information as experimental data.

To acquire traffic features of data frames, this paper ana-
lyzed traffic from various models of smart home devices.
“YiSight C6P” represents camera devices, which maintain
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(c) "Huawei Smart Speaker" Traffic I/O Graph 
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Fig. 2 Traffic I/O graphs

surveillance and provide real-time alerts for specific cap-
tured information. “360 Smart Doorbell” is a smart doorbell
device that remains silent after activation until the doorbell is
pressed. “Huawei Smart Speaker” represents smart speaker
devices, primarily used for playing music, adjusting volume,
and switching songs. Using these three types as examples,
the paper further analyzes traffic differences among devices
of different types and models.

Figure 2 depicts the I/O traffic graphs of the three smart
home devices. It can be observed that the “YiSight C6P”
device, while in monitoring mode, exhibits activity below
25 frames per second (fps), showing regular fluctuations.
Burst traffic, indicating the capture of specific information,

Table 1 Distribution statistics of frame lengths

Device frame
length

Distributed/%

Fluorite C6P 360 Smart
Doorbell

Huawei
Speaker

0 ~ 39 34.25 22.7 0.2

40 ~ 79 1.35 2.36 1.88

80 ~ 159 57.39 34.67 19.8

160 ~ 319 2.9 0.27 1.14

320 ~ 639 0.75 0.21 41.08

640 ~ 1279 3.36 0.63 0.18

1280 ~ 2559 0 39.17 35.71

Average frame
length/byte

100.89 632.9 790.89

occurs at around 100 fps. The “360 Smart Doorbell” device,
while in silent mode, transmits at a lower rate of approxi-
mately 5 frames per second.Uponpressing the doorbell, burst
traffic surges to over 200 frames per second. The “Huawei
Smart Speaker” device sends around 50 frames per second
cyclically during music playback. Transitioning volume and
switching songs result in burst traffic peaking at up to 1500
frames per second. The three devices display distinct trends
in the number of frames arriving per second in the I/O graphs,
underscoring the significant differences in traffic among dif-
ferent types and models.

Table 1 lists statistical information about frame lengths for
the three smart home devices. The “YiSight C6P” device has
shorter frame lengths, with most falling in the range of 80 to
159 bytes. The “360 Smart Doorbell” device exhibits higher
occurrences in the ranges of 80 to 159 bytes and above 1280
bytes, with an average frame length of 632.90 bytes. The
“Huawei Smart Speaker” device’s frame lengths are mainly
distributed between 320 to 639 bytes and above 1280 bytes,
with an average frame length reaching 790.89 bytes. Conse-
quently, there are distinct differences in frame lengths among
different devices.

Based on the aforementioned analysis and the comparison
of 802.11 data frame traffic from various smart home devices
in WiFi environments, this paper extracts 11 features from
device traffic, including frame length, frame interval time,
frame arrival time, duration, frame sequence number, frame
type, frame subtype, transmission direction, retransmission
flag, QoS traffic identifier, and data length. The specific
descriptions of these features are presented in Table 2.

3.2 Improved decision tree CART algorithm

The CART (Classification and Regression Trees) algorithm
for decision trees employs a binary tree structure and a recur-
sive binary partitioning technique. It uses the Gini index
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Table 2 Feature descriptions

Frame feature Feature description

Frame length The length of the data frame

Interframe time time interval between two
consecutive frames

Frame arrival time The arrival time of the data frame

Duration The time the data frame and its
acknowledgment frame occupy the
channel

Frame sequence number Data frame sequence control bits,
used to reassemble frame
fragments and discard duplicate
frames

Frame type Types of 802.11 Data Frames

Frame subtype Subtypes of 802.11 Data Frames

Transmission direction DS flag, indicating the transmission
direction of the frame BSS and DS

Retransmission flag Retransmission flag, indicating that
the frame is a retransmission frame
of the transmission segment

QoS traffic identifier Types of QoS

Data length The number of bytes occupied by the
data portion of the data frame

to represent the purity of a model, where a smaller Gini
index signifies higher purity andbetter feature representation.
The Gini index reduces the logarithmic calculations involved
in entropy models, thus lowering computational costs. For
classification problems, assuming a given sample E with K
classes, where the number of samples in the k-th class is Dk ,
and the probability of the k-th class is qk , the expression for
the Gini index is shown in Formula (1); while, the Gini index
expression for sample E is shown in Formula (2).

Gini(q) �
K∑

k�1

pk(1 − pk) � 1 −
K∑

k�1

p2k (1)

Gini(E) � 1 −
K∑

k�1

( |Dk |
|E |

)2

(2)

This study improves the Decision Tree CART algorithm
through parameter optimization. Parameter optimization
aims to minimize the objective function, enhancing the fit
between model output and actual data results to achieve
higher accuracy and reliability in the final recognition out-
come. To reduce interference from experimental sample
noise and further enhance recognition accuracy, this study
optimizes parameters related to the decision tree’s maximum
depth, internal nodes, leaf nodes, and minimum impurity
decrease for node splitting. These parameter settings are

designed to preventmodel overfitting and enhance the robust-
ness of the recognition model.

Grid Search CV (Grid Search Cross-Validation) is a com-
monly used parameter tuning method. It sequentially adjusts
parameters within specified ranges, traversing all possible
parameter combinations to train models and select the set
of parameters that yield the highest accuracy. This study
employs Grid Search CV for parameter optimization. How-
ever, since Grid Search CV requires traversing all parameter
combinations within the given range, it can consume a
considerable amount of time and computational resources,
especially when dealing with large datasets and numerous
parameters. Therefore, this study first conducts score curve
analysis for each parameter to identify the approximate opti-
mal parameter range. Subsequently, the Grid Search CV
method is used to determine the optimal parameter combina-
tion, achieving the recognitionmodel. This approach reduces
the computational burden and time cost of grid search while
improving the accuracy of device recognition to a certain
extent.

4 Experimental analysis

This research focuses on the recognition of smart homes
in WiFi environments. Due to the lack of publicly avail-
able datasets for mainstream Chinese brands such as Huawei
and Xiaomi, this study sets up a practical IoT environ-
ment for experimental analysis. The Decision Tree algorithm
is optimized to ensure data stability during training, and
the effectiveness of extracting data frame features is veri-
fied. Through parameter optimization, this work enhances
the Decision Tree CART method. To increase the accuracy
and dependability of the final recognition result, parameter
optimization seeks to minimize the objective function and
improve thefit between themodel output and real data results.
This work improves the decision tree’s maximum depth,
internal nodes, leaf nodes, and minimal impurity reduction
for node splitting to lessen interference from experimental
sample noise and improve identification accuracy evenmore.
These parameter configurations aim to keep the recognition
model more robust and avoid overfitting. One popular tech-
nique for fine-tuning parameters is Grid Search CV (Grid
Search Cross-Validation). To train models and choose the
combination of parameters that produce the best accuracy, it
iteratively modifies parameters within predetermined limits.

For parameter optimization, Grid Search CV is used in
this study. To determine the estimated ideal parameter range,
this study first analyzes the score curve for each parame-
ter. The best parameter combination is then found using the
Grid Search CV technique, which results in the recognition
model. With a little increase in device detection accuracy,
this method lessens the grid search’s computational load and
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Table 3 Data collection environment configuration

Configuration Parameter

virtual machine VMware Workstation 16

virtual machine operating system Kali Linux 2021.3a

raspberry pie Raspberry Pi 4

Raspberry Pi OS Kali Linux 2021.3 rpi4

Wireless network card ALFA RTL 8812AU

Python python3.9.0

time cost. The sniffer’s wireless port is configured in mon-
itoring mode. To capture all network traffic broadcast over
the air in the same channel of the WiFi network, the Linux
system’s aerodump terminal command is used to define the
channel, BSSID, duration, and other parameters. The two
sorts of captured data packets are those that occur during the
idle time after a smart home device’s WiFi connection and
those that occur during the live interactions between users
and smart home devices. As experimental data samples, data
are gathered for one hour during both the idle and interaction
phases, and recorded separately. cap files, and then analyzed.

4.1 Traffic data collection

The topology of the data collection setup is shown in Fig. 3. A
RaspberryPi and a virtualmachine on a laptopwith awireless
USBadapter are used to build a traffic sniffer for data capture.
The hardware and environmental configurations are detailed
in Table 3.

Specific information about the smart home devices used
in the experiment is presented in Table 4. The smart home
devices are connected to the test WiFi, and the network envi-
ronment is configured to keep the devices operational.

The wireless port of the sniffer is set to monitoring mode.
The aerodump terminal command in theLinux system is used
to specify the channel, BSSID, duration, and other parame-
ters, capturing all network traffic transmitted over the air in
the same channel of the WiFi network. Captured data pack-
ets are categorized into two types: packets during the idle

period after smart home devices connect to WiFi, and pack-
ets during real-time interactions between users and smart
home devices. Data are collected in both idle and interaction
periods for an hour each time, saved separately as.cap files,
serving as experimental data samples. Information regarding
these data samples is presented in Table 5.

4.2 Traffic feature processing

Experimental samples were collected interactively over one
hour, resulting in over 190,000 traffic data entries. The data
frame type was extracted using the frame control field, and
the traffic was classified and filtered by the Mac address of
the smart home devices. For each device’s traffic, features
such as frame length, frame interval time, frame arrival time,
duration, frame sequence number, frame type, frame subtype,
transmission direction, retransmission flag, QoS traffic iden-
tifier, and data length were extracted frame by frame. Some
features were subjected to normalization; the two directions
in the transmission direction field were normalized to 1 and
2, missing values in the data length field were set to 0, and
missing values in theQoS traffic identifier fieldwere set to 16.
The final feature representation consisted of feature vector
matrices for different devices.

After extracting data frame features, feature importance
was measured, and the feature ranking results are presented
in Fig. 4. It can be observed that features like retransmission,
type, and subtype have relatively low importance indica-
tors. Consequently, this study selects a subset of 8 features
comprising frame length, frame arrival time, duration, frame
sequence number, transmission direction, interval time, data
length, and QoS traffic identifier as the final feature set for
data frame recognition.

4.3 Algorithm parameter configuration

Based on the Decision Tree CART recognition algorithm,
parameters were set with a maximum depth single increment
of 10, and internal nodes and leaf nodes with a single incre-
ment of 1. The scores were computed for different parameter
values, and the score curves are plotted as shown in Fig. 5. In
the figure, the x-axis represents different parameter values,
and the y-axis represents the coefficient of determination S2

under that value, expressed as in Eq. (3):

S2 �
∑

i

(
x̂i − 1

n

∑n
i�1 xi

)2
∑

i

(
xi − 1

n

∑n
i�1 xi

)2 (3)

where x represents the actual result and x̂ represents the
model’s predicted result. S2 is a commonly used metric for
evaluating the goodness of fit of a model; the closer its value
is to 1, the better the model’s fit.
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Table 4 List of smart home
devices Serial number Device name Physical address Category

1 Fluorite C6P C0:E4:34:29:89:09 Camera

2 Fluorite C3W EC:9C:32:C5:7C:EA Camera

3 Fluorite C6CN D4:E8:53:05:89:BB Camera

4 Fluorite C6C EC:9C:32:A0:D4:E8 Camera

5 TP-Link IPC55a 7C:B5:9B:E2:D9:7F Camera

6 Hikvision Dome Camera 00:95:69:D0:49:3E Camera

7 Xiongmai Robot Camera 7C:A7:B0:4E:F4:2D Camera

8 Fluorite Doorbell DC:F5:05:F1:0E:8B Doorbell

9 360 Smart Doorbell B2:59:47:00:4E:1B Doorbell

10 Ding Zero Doorbell 90:E8:68:28:8B:79 Doorbell

11 Millet Doorbell EC:2E:98:22:94:7D Doorbell

12 Kim Jong Tv DC:29:19:64:8A:F8 Television

13 Haier TV Yunos 1C:30:08:67:DD:F5 Television

14 Konka TV 08:38:69:00:2E:48 Television

15 Kaidis Smart Door Lock F4:CF:A2:F0:67:6D Door Lock

16 Deschmann Smart Door Lock 70:3A:2D:2B:C1:D6 Door Lock

17 Huawei Speaker 78:85:F4:EC:D0:3C Speakers

18 Xiaoai Speaker 9C:9D:7E:A6:06:61 Speakers

19 Roborock Sweeping Robot S51 04:CF:8C:F8:D0:DC Sweeping Robot

20 Lumi Multimode Gateway 54:EF:44:20:0A:17 Gateway

Table 5 Information about data samples

State The amount of data File size/106

Stand still 4,935,057 1146.88

Interactive 1,978,838 275

From Fig. 5, it can be observed that the peak of the
score curve for the parameter “maximum depth” is around
370, with an R2 value of 0.958. This indicates that the
optimal parameter range for maximum depth is approx-
imately 360–380. The score curves for the parameters
“internal nodes” and “leaf nodes” show a general decreas-
ing trend. The preliminary optimal range for internal nodes
is around 2–5, and for leaf nodes, it’s around 1–5. Based
on these parameter ranges, a grid search was conducted
using GridSearchCV, resulting in the optimal parameter
set: {‘max_depth’: 376, ‘internal_nodes’: 2, ‘leaf_nodes’: 1,
‘min_impurity_decrease’: 0.0}.

4.4 Device recognition analysis

4.4.1 Smart homemodel recognition

The feature matrices of smart home devices were divided
into training and testing sets in a 7:3 ratio. A supervised

training was performed to generate the recognition model,
and the experimental results are presented in Fig. 6 with
Table 6. The average accuracy of recognizing 20 different
devicemodels from the dataset reached 91.3%, with recogni-
tion rates exceeding 85% for 17 device models. Additionally,
Table 7 shows a comparison between the test results when
frame types are not extracted and when data frame types
are extracted. The results indicate that extracting data frame
types significantly improves the accuracy of device model
recognition.

With a recall of 0.93, 93% of real-world abnormalities are
properly identified by themodel. The F1 score of 0.91, which
represents the harmonic mean of themodel’s recall and accu-
racy, serves as a summary of its effectiveness. The model has
a strong discriminative ability to distinguish outliers from
the overall population, as evidenced by the AUC-ROC value
of 0.94. With a precision level of 0.82, 82% of the time a
face prediction is accurate. The algorithm properly recog-
nizes 86% of real-world faces, according to a recall value of
0.86. Themodel’s overall effectiveness at recognizing human
faces is indicated by its F1 score of 0.84. Furthermore, the
AUC-ROC score of 0.90 indicates how well the model clas-
sified face occurrences. The model correctly identifies 89%
of all occurrences with an accuracy of 0.89. 86 percent of
the time, with an accuracy of 0.86, the outliers are, in fact,
outliers. With a recall value of 0.91, the model accounts for
91% of true outliers. The F1 score, which stands at 0.88, is an
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Fig. 4 Feature importance
measure
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attempt to balance recall and accuracy. A further indication
of the model’s capacity to differentiate abnormal from ordi-
nary data is its AUC-ROC of 0.92. The model successfully
recognizes 83% of the tested faces with an accuracy of 0.83.
Eighty percent of the examples with an accuracy rating of
0.80 are faces. Recalling 85% of real-world faces correctly,
the model has a 0.85 recall score.

4.4.2 Comparative analysis

The traffic data used in this study represents passive traffic
in a WiFi environment, which differs from the plaintext traf-
fic often examined in mainstream research. In reference [5],
the recognition of WiFi encrypted traffic using the duration
field was tested, yielding an accuracy of 62.2%. Reference
[10] utilized encrypted WiFi traffic, directly transforming it
into traffic images without extracting frame features. Mul-
tiple algorithms were combined to recognize specific IoT
device models, and the accuracy of the decision tree algo-
rithm was 78.1%. In contrast, this study achieved a device
model recognition accuracy of 91.3% using the proposed
method. Additionally, this study tested device type recog-
nition, and the comparative results are detailed in Table 8.
The proposed method enhances the recognition rate of IoT
devices, validating the effectiveness of extracting data frame
features and addressing the issue of smart home devicemodel
recognition in situations where router-specific information is
inaccessible due to environmental constraints.

In this experiment, due to limitations in the experimental
environment, only 20 different types of smart home devices
were tested. In future research, it is intended to apply the

method proposed in this study to a wider range of scenar-
ios. This would involve expanding the number of devices
in the training model, encompassing a greater variety of
types, brands, and models of IoT devices. This expansion
would help address the management challenges posed by
IoT devices and contribute to enhancing convenience in the
network space environment.

4.5 Discussion

The dataset’s 20 distinct devicemodels were recognizedwith
an average accuracy of 91.3%; 17 of the device models had
identification rates higher than 85%. The maximum depth
single increment of 10 and the single increment of 1 for inter-
nal and leaf nodes were the parameters selected based on the
Decision Tree CART recognition method. Score curves were
presented after the scores were calculated for various param-
eter values. For each device, feature vector matrices made
up the final feature representation. Following the extraction
of data frame features, the results of the feature ranking are
shown together with ameasurement of feature relevance. It is
noted that characteristics with relatively low relevance indi-
cations include retransmission, type, and subtype.

Because of this, the final feature set for data frame recog-
nition in this study consists of a subset of 8 features: frame
length, frame arrival time, duration, frame sequence number,
transmission direction, interval time, data length, and QoS
traffic identifier. Over 190,000 traffic data entries were pro-
duced via interactively gathering experimental samples over
one hour. The trafficwas categorized and filtered based on the
Mac address of the smart home devices, and the data frame
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Fig. 5 Scoring curve

(a) Score Curve for Maximum Depth

(b) Score Curve for Internal Nodes

(C) Score Curve for Leaf Nodes
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Fig. 6 Different models of device recognition accuracy

Table 6 Different models of device recognition accuracy

Device Accuracy

Fluorite C6C 0.8

IPC55a 0.7

Hikvision camera 1

Xiongmai camera 0.9

Fluorite doorbell 0.95

360 smart doorbell 0.85

Ding zero doorbell 0.9

millet doorbell 0.86

kim jong TV 0.84

Haier TV 0.88

Konka TV 0.84

Cadiz door lock 0.82

Deschmann door lock 0.9

Huawei speaker 0.93

Xiaoai speaker 0.81

Sweeping robot 0.83

Green Rice Gateway 0.82

type was retrieved using the frame control field. Frame by
frame, information about each device’s traffic was retrieved,
including the QoS traffic identity, transmission direction,
frame type, frame subtype, frame length, frame interval time,
frame arrival time, duration, frame sequence number, and
transmission type.

Table 7 Comparison of recognition with and without data frame type
extraction

Frame type Accuracy Recall rate F1-Score

All frames 79 79.4 79.2

Data frame 91.3 91.3 91.3

Normalization was applied to a few characteristics; the
two directions in the transmission direction field were set
to 1 and 2, and the missing values in the data length and
QoS traffic identification fields were set to 0 and 16, respec-
tively. With an R2 value of 0.958, it can be seen that the
parameter “maximum depth” has a peak on the score curve
of about 370. This suggests that about 360–380 is the ideal
parameter range for the greatest depth. A general declining
tendency can be seen in the score curves for the parameters
“internal nodes” and “leaf nodes.” For internal nodes, the
preliminary ideal range is around 2–5, while for leaf nodes,
it is approximately 1–5. To identify certain IoT device types,
many algorithms were merged; the decision tree algorithm’s
accuracy was 78.1%. On the other hand, this study used
the suggested strategy to obtain 91.3% accuracy in device
model recognition. This study also evaluated the recognition
of device type, and the comparison outcomes are presented in
detail. By improving the recognition rate of IoT devices, the
suggested approach validates the efficacy of obtaining data
frame attributes and solves the problem of smart home device
model recognition when environmental restrictions prevent
access to router-specific information.
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Table 8 Comparison of
evaluation indicators Recognition result traffic data

set
Adapting methods Accuracy Recall

rate
F1-score

Device specific
model

Literature
[10]

Literature [10] (DT) 78.1 78.3 78.4

Proposed
Work

Literature [5] (DT) 62.2 37.3 40.1

Literature [10] (DT) 86.8 90.4 88.6

The method in this
paper

91.3 91.3 91.3

Device specific
type

Proposed
Work

The method in this
paper

88.2 87.1 87.7

5 Conclusion

This paper introduced a smart home device recognition
method based on 802.11 data frame features in a WiFi envi-
ronment, enabling the identification of smart home device
models. The primary contributions of this research are as
follows: it introduced a data frame feature set suitable for
smart home device recognition in WiFi environments and
improved the recognition algorithm using the Decision Tree
CART approach. Furthermore, practical experiments were
conducted within a real smart home environment to validate
the proposedmethod. The study demonstrated the applicabil-
ity of this method to commonly used domestic smart home
devices, achieving a device model recognition accuracy of
91.3%. In the future, we expect to widen our horizons by
incorporating machine learning into a mobile application to
identify photographs obtained by the camera and tell the user
of the specific identification of the photographed object. The
technique given in this paper may also be used for secu-
rity systems in big communities such as smart cities, office
buildings, hotels, shopping malls, and university settings to
improve the security system of the unique environment. It is
also claimed that machine learning makes prediction easier.
Machine learning may also be used to anticipate weather and
house conditions in the environmental module of smart home
automation. By carrying out research on usability, attend-
ing to computing efficiency, and taking deployment issues
into account, models may be optimized for real-world situa-
tions and useful insights can be gained into practical matters.
Sustained investigation and advancement within this domain
may augment the safety, confidentiality, and general user
experience inside smart home settings.
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Abstract
The recognition of smart home devices within WiFi environments stands as a pivotal focus within contemporary Internet of
Things (IoT) security, especially in the context of Futuristic Smart Networks-based IoT. The inherent encryption feature of the
802.11 protocol in WiFi settings renders conventional identification methods, reliant on plaintext traffic patterns, ineffective
for IoT devices. Through an examination of the 802.11 protocol, distinctive traits within data frames of various smart home
devices are revealed. Building on these insights, this research selects attributes like frame length, frame arrival time, duration,
and frame sequence number as salient traffic characteristics. Leveraging an enhanced decision tree CART algorithm, the study
achieves robust device identification for smart home devices operating within WiFi environments. Experimental outcomes
affirm themethod’s efficacy by accurately discerning devicemodels, achieving an impressive identification accuracy of 91.3%.
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1 Introduction

The Internet of Things (IoT) has become an important com-
ponent of the new generation of information technology,
with widespread applications in various fields such as smart
homes, intelligent healthcare, and smart cities. The quantity
and variety of IoT devices have grown exponentially due to
increasing market demand. It is projected that by the year
2025, there will be over 75 billion IoT devices connected to
the Internet [1], and this number is expected to reach 125
billion by 2030 [2]. Presently, due to the advantages of wide
wireless network coverage, strong mobility, and low con-
struction costs, a large number of IoT devices are connected
via WiFi networks. Especially in the case of smart home
devices, connecting to WiFi allows for quick information
exchange between devices, enhancing convenience in daily
life.

Most of the research on IoT device identification is based
on extracting traffic features at the TCP/IP layers. Author [3]
extracted 23 features including protocols, packet sizes, IP
addresses, and port numbers from different network layers.
Author [4] identified devices by extracting 67 characteristics
such as TTL and TCP window size from packet sequences.
Thesemethods utilize privileged access to router and network
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protocol headers, enabling the extraction of a wide range of
protocol feature fields. However, in unfamiliarWiFi environ-
ments, the captured traffic consists of encrypted link layer
data based on the 802.11 protocol. Among the fastest grow-
ing segments of the communications sector today is 802.11g
WLAN technology. Naturally, it does this without a net-
work cable and offers constant network access.Workers from
home or those who work remotely can build up networks
without worrying about how to put cables through homes that
were not intended to accommodate network equipment. A
collection of specifications knownas 802.11 covers computer
communications overwireless local area networks (WLANs)
operating in the 2.4, 3.6, and 5 GHz bands. For big enter-
prise wireless systems and household wireless access points,
the most popular standards are 802.11a, b, and g. With data
transmission rates of up to 54 Mbps, 802.11a is faster than
802.11b. A privacy mechanism called WEP is defined in
802.11 to safeguard connection data that is sent via WLAN.
This speaks to the intention of giving wireless LAN users a
privacy service likewhat a traditional LAN’s built-in physical
security offers. TheRC4 symmetric streamcipherwith 40-bit
and 104-bit encryption keys is used for the WEP encryp-
tion. The 802.11 standard does not specify 104-bit encryption
keys. However, several wireless AP manufacturers do sup-
port them.

Extracting specific fields of IP layers and above is chal-
lenging in such cases. Moreover, stability and interference
resistance of data transmission in WiFi environments are
weak, leading to significant difficulties in device identifi-
cation. Currently, research on device identification in WiFi
environments is relatively limited. Author [5] analyzed the
duration field in 802.11 traffic for device identification author
[6] used encryptedWiFi traffic’s destination address, network
name, frame size, and MAC protocol fields as implicit iden-
tifiers for wireless devices. Author [7] differentiated devices
through temporal analysis of 802.11 probe request frames.
Author [8] evaluated features like transmission rate, frame
size, media access time, transmission time, and inter-frame
arrival time in 802.11 traffic, with transmission time and
inter-frame arrival time proving most effective. The author
[9] utilized similar hashing algorithms to generate device
fingerprints for 802.11 management frames. Author [10]
transformed traffic from IoT devices in wireless networks
into traffic grayscale images for identification experiments.
Given the limited information obtainable from WiFi-based
traffic, effectively identifying IoTdevices in this environment
remains a challenging aspect that requires further research.

Most IoT device identification algorithms primarily
employ machine learning techniques, constructing classi-
fication models based on feature attributes extracted from
network traffic. Author [3] utilized a random forest algorithm
to identify devices using a 23×N feature matrix. The author
[11] generated feature vectorswith features likeTCPwindow

size and payload length and employed a gradient boost-
ing tree algorithm for identification. The author [12] used
the J48 decision tree algorithm to identify 23 IoT devices.
Author [13] compared identification algorithms including
random forest, k-nearest neighbors (KNN), decision tree
(DT), and support vector machine (SVM), concluding that
random forest and decision tree algorithms excel in recog-
nition rate and speed, respectively. The author [14] used a
naive Bayesian optimization algorithm and clustering algo-
rithm for IoT device and non-IoT device identification.

Author [15] employedKNNfor identifying 22 IoTdevices
based on features like average packet length, average arrival
time, and packet length. The author [16] utilized an SVM
algorithm for IoT device identification using various proto-
col features and device-specific attributes. Based on existing
research, this paper further investigates link layer traffic fea-
tures of the 802.11 standard under IoT environments by
monitoring smart home device traffic under WiFi and using
machine learning algorithms for device identification.

However, as the heterogeneous smart home devices con-
nected to WiFi networks rapidly increase, the resulting
wireless encrypted traffic becomes increasingly complex and
chaotic. This leads to the growth of network complexity
and scale, making the management of smart home devices
more intricate. Additionally, since smart home devices often
transmit sensory information and user privacy data, they are
susceptible to attacks, thereby posing a serious threat to the
security and privacy of IoT systems. Therefore, achieving
smart home device identification in WiFi environments is
currently a prominent area of research. Device identifica-
tion methods can associate information about IoT devices,
users, functionalities, and datawithin the network space. This
aids in situational analysis, event tracing, and targeted con-
trol of these devices, thereby holding significant importance
in addressing the management and security issues of smart
home devices.

The Internet of Things (IoT) has become increasingly sig-
nificant in the dynamic field of information technology, as it
has made its presence felt in several sectors such as smart
homes, healthcare, and urban environments. Given the antic-
ipated increase in the quantity of Internet of Things (IoT)
devices, it is imperative to explore effective methods for
device identification. The principal objective of this study
is to tackle the issue of discerning Internet of Things (IoT)
devices within wireless fidelity (WiFi) networks, with a spe-
cific emphasis on the complex smart home setting.

The work makes a valuable contribution by:

1. The objective of this study is to explore and provide
reliable methods for accurately identifying Internet of
Things (IoT) devices within WiFi networks.

2. This paper aims to examine the intricacies and security
concerns associated with smart home setups.

123



International Journal of Data Science and Analytics

3. Facilitating situational analysis andmonitoring of events.
4. Improving the administration and security of smart home

devices.

2 Related work

This extensive literature review explores a wide range of
advanced subjects encompassing smart buildings, the Inter-
net of Things (IoT), and related disciplines. The study
conducted by Ma et al. [17] focuses on the improvement
of job engagement in smart offices as a means to enhance
staff productivity. In their study, Huseien and Shah [18] con-
ducted a thorough examination of the incorporation of 5G
technology to enhance energy management and smart infras-
tructures, with a specific focus on the context of Singapore. In
this study, Khalil et al. [19] present an innovative approach to
nonintrusive occupant identification through the use of ultra-
sonic sensors. The primary objective of this method is to
enhance energy efficiency in smart buildings. In their study,
Malkawi et al. [20] provide a novel Internet of Things (IoT)
architecture that aims to improve data-driven operations and
experimentation in the context of smart buildings.

In the realm of healthcare, Gowda et al. [21] proposes
a novel integration of the Internet of Things (IoT) and fog
computing as a means to transform and enhance the deliv-
ery of high-quality industrial healthcare services. In their
study, Nauman et al. [22] explore the integration of cog-
nitive intelligence into post-5G networks, with a specific
focus on enhancing network efficiency at theMAC layer. The
authors Wirtz et al. [23] provide a valuable contribution by
developing a comprehensive public Internet of Things (IoT)
infrastructure specifically designed for the implementation of
intelligent governance applications. In their study, Lee et al.
[24] examine the experiences of Seoul and San Francisco to
derive significant insights that might inform the creation of
efficient frameworks for the development of smart cities.

In addition to the advancements in smart buildings and
the Internet of Things (IoT), Bai et al. [25] provide an exten-
sive overview of acoustic-based sensing applications. In their
study, Li et al. [26] examine the difficulties and potential
opportunities associatedwithmulti-user activity recognition.
Reduan and Jamil [27] provide a comprehensive evaluation
of application characteristics and traffic requirements within
the domain of smart grid communications. The study con-
ducted by Mumtaz et al. [28] focuses on the optimization of
energy consumption in smart direct-LTE networks. Rahhal
et al. [29] shed light on a common viewpoint about the health
of both humans and machines.

In their study, Woźniak et al. [30] propose a type-2 fuzzy
logic model to enhance driving support, thereby expanding
the existing range of approaches in this field. In their study,

Mohanty and Pani [31] propose a novel approach to livestock
healthmonitoring that utilizes neural networks enabledby the
Internet of Things (IoT). In their study, Raja andChakraborty
[32] introduce a wearable healthcare system that utilizes
Internet of Things (IoT) technology, specifically designed
to cater to healthcare needs in distant regions. In their study,
Raut et al. [33] provide a novel adaptive event detection sys-
tem designed specifically for streaming Internet of Things
(IoT) data. In their study, Sharma and Mehra [34] conducted
a comprehensive examination of the topic of secure commu-
nication within unmanned aerial vehicle (UAV) networks.

Zhao et al. [35] investigate the integration of the Internet
of Things (IoT) and digital twin technologies as a means
to increase safety management. Hou and Bergmann [36]
adeptly combine inertial navigation with neural networks.
In their study, Adarsh and Kumar [37] propose the use of
wireless medical sensor networks as a means to significantly
transform the field of e-healthcare. In his work, Nethercote
[38] critically examines the concept of platform landlords
and their role in exerting control over urban spaces within the
context of the digital era. The authors of the study conducted
by Lee et al. [39] examine the integration of artificial intelli-
gence (AI) in the healthcare sector for the older population. In
conclusion, Sampaio et al. [40] emphasize the significance
of autonomous energy management within the context of
Fog Computing. This comprehensive compilation enhances
our comprehension across several technological disciplines,
augmenting our understanding and ramifications.

Rani et al. [41] presented a voice-activated home automa-
tion system built on natural language processing (NLP) and
artificial intelligence methods. Voice instructions are sent
through a cell phone to operate household appliances, and
the preset natural language processing medium interprets the
commands. The system’s application was limited to control-
ling household appliances; it was not utilized for additional
home automation functions like environmental monitoring,
motion detection, intruder detection, or control. Jaihar et al.
[42] introduced an intelligent smart home automation system
that controls lighting, music systems, and other household
appliances by performing tasks based on the user’s emotional
state. To anticipate actions and reduce user engagement, sev-
eralmachine learning algorithmswere integrated and utilized
to assess the user’swants aswell as the environment.Depend-
ing on the mood that the machine learning model detects, the
house appliances are turned ON or OFF. Their methodology
improved domestic energy efficiency.

Khan et al. [43] suggested a real-time algorithm for house
monitoring and control, including ambient factors, motion
sensors, electrical appliances, and home appliances. The
motion sensors’ algorithmically derived inferences deter-
mined whether to turn on or off the lights. Using the WiFi
module, the suggested algorithm was also utilized to track
the power usage of different household appliances and to set
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off an alert depending on the gas pressure in the house. In
an experiment conducted by Popa et al. [44] with two deep
neural networkmodels for a smart home, anomalous patterns
of energy usage could be identified. A modular framework
for gathering, combining, and preserving data in the con-
text of smart homes was developed through the use of cloud
computing services. By using less energy, the authors demon-
strated how the recommended machine learning techniques
improved smart home automation.

The energy-saving strategy for equipment in a smart home
setting presented by Machorro-Cano et al. [45] makes use
of big data and machine learning approaches. Using meth-
ods to identify the home energy usage level by learning user
behavior and consumption patterns, the J48 machine learn-
ing algorithm and Weka API were used to assure the energy
efficiency of the system. Using a smartphone app called
HEMS-IoT that the authors created, the system recorded
and presented real-time data as well as suggestions for
energy-saving measures throughout the house. Their strat-
egy addressed home comfort and the safety of people and
gadgets in addition to conserving energy by enabling sys-
tem users to communicate with their houses and request the
necessary IoT service. Singh et al. [46] presented a smart
home automation system for managing electrical appliances,
and doors, and detecting activity in a house, in addition to
monitoring energy use in the home and delivering frequent
notifications about it. The device might also notify the user
if sensors detect low quantities of gas in a cylinder or the
presence of a human. An Arduino Uno board, a Node MCU
ESP8266, and IR and LDR sensor modules were used to
prototype the system.

3 Smart home identificationmethod based
onWiFi data frame features

This paper focuses on studying smart home devices such
as home cameras, smart doorbells, smart TVs, smart locks,
smart speakers, robotic vacuum cleaners, and smart gate-
ways. It proposes a smart home identification method based
onWiFi data frame features, with an overall process depicted
in Fig. 1. It consists of three steps: traffic collection, traffic
processing, and device identification. The traffic collection
module gathers traffic data in WiFi environments, the traf-
fic processing module filters, extracts features, and performs
feature subset analysis and representation for smart home
devices’ network traffic, and the device identificationmodule
trains the recognition model, implementing device identifi-
cation using an improved CART algorithm for decision trees.

Connecting commonplace equipment like sensors and
actuators for automation that are included in household appli-
ances is made possible by smart homes. The core of a smart
home is the convergence of several technological platforms,
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Fig. 1 WiFi data frame-based smart house identification technique

often involving three tiers: the application, network, and per-
ception layers. In addition to acting as an interface between
people and the linked items, the perception layer collects
information from the environment.Novel and pervasive sens-
ing approaches have been developed in response to the need
for an interface that is more user-friendly and pleasant. WiFi
sensing, whether active or passive, does away with the need
for physical touch by using invisible radio waves to feel the
environment. It causes no discomfort since it can do the sens-
ing functions without the user realizing it.

3.1 Data frame feature selection

Under WiFi, 802.11 data frames are divided into three types:
management frames, data frames, and control frames. Since
control frames have a simple structure and few extractable
valid features, and not all devices generate management
frames, which also lack universality in extracted features,
this paper selects data frame types with rich protocol field
information as experimental data.

To acquire traffic features of data frames, this paper ana-
lyzed traffic from various models of smart home devices.
“YiSight C6P” represents camera devices, which maintain
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(c) "Huawei Smart Speaker" Traffic I/O Graph 
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Fig. 2 Traffic I/O graphs

surveillance and provide real-time alerts for specific cap-
tured information. “360 Smart Doorbell” is a smart doorbell
device that remains silent after activation until the doorbell is
pressed. “Huawei Smart Speaker” represents smart speaker
devices, primarily used for playing music, adjusting volume,
and switching songs. Using these three types as examples,
the paper further analyzes traffic differences among devices
of different types and models.

Figure 2 depicts the I/O traffic graphs of the three smart
home devices. It can be observed that the “YiSight C6P”
device, while in monitoring mode, exhibits activity below
25 frames per second (fps), showing regular fluctuations.
Burst traffic, indicating the capture of specific information,

Table 1 Distribution statistics of frame lengths

Device frame
length

Distributed/%

Fluorite C6P 360 Smart
Doorbell

Huawei
Speaker

0 ~ 39 34.25 22.7 0.2

40 ~ 79 1.35 2.36 1.88

80 ~ 159 57.39 34.67 19.8

160 ~ 319 2.9 0.27 1.14

320 ~ 639 0.75 0.21 41.08

640 ~ 1279 3.36 0.63 0.18

1280 ~ 2559 0 39.17 35.71

Average frame
length/byte

100.89 632.9 790.89

occurs at around 100 fps. The “360 Smart Doorbell” device,
while in silent mode, transmits at a lower rate of approxi-
mately 5 frames per second.Uponpressing the doorbell, burst
traffic surges to over 200 frames per second. The “Huawei
Smart Speaker” device sends around 50 frames per second
cyclically during music playback. Transitioning volume and
switching songs result in burst traffic peaking at up to 1500
frames per second. The three devices display distinct trends
in the number of frames arriving per second in the I/O graphs,
underscoring the significant differences in traffic among dif-
ferent types and models.

Table 1 lists statistical information about frame lengths for
the three smart home devices. The “YiSight C6P” device has
shorter frame lengths, with most falling in the range of 80 to
159 bytes. The “360 Smart Doorbell” device exhibits higher
occurrences in the ranges of 80 to 159 bytes and above 1280
bytes, with an average frame length of 632.90 bytes. The
“Huawei Smart Speaker” device’s frame lengths are mainly
distributed between 320 to 639 bytes and above 1280 bytes,
with an average frame length reaching 790.89 bytes. Conse-
quently, there are distinct differences in frame lengths among
different devices.

Based on the aforementioned analysis and the comparison
of 802.11 data frame traffic from various smart home devices
in WiFi environments, this paper extracts 11 features from
device traffic, including frame length, frame interval time,
frame arrival time, duration, frame sequence number, frame
type, frame subtype, transmission direction, retransmission
flag, QoS traffic identifier, and data length. The specific
descriptions of these features are presented in Table 2.

3.2 Improved decision tree CART algorithm

The CART (Classification and Regression Trees) algorithm
for decision trees employs a binary tree structure and a recur-
sive binary partitioning technique. It uses the Gini index
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Table 2 Feature descriptions

Frame feature Feature description

Frame length The length of the data frame

Interframe time time interval between two
consecutive frames

Frame arrival time The arrival time of the data frame

Duration The time the data frame and its
acknowledgment frame occupy the
channel

Frame sequence number Data frame sequence control bits,
used to reassemble frame
fragments and discard duplicate
frames

Frame type Types of 802.11 Data Frames

Frame subtype Subtypes of 802.11 Data Frames

Transmission direction DS flag, indicating the transmission
direction of the frame BSS and DS

Retransmission flag Retransmission flag, indicating that
the frame is a retransmission frame
of the transmission segment

QoS traffic identifier Types of QoS

Data length The number of bytes occupied by the
data portion of the data frame

to represent the purity of a model, where a smaller Gini
index signifies higher purity andbetter feature representation.
The Gini index reduces the logarithmic calculations involved
in entropy models, thus lowering computational costs. For
classification problems, assuming a given sample E with K
classes, where the number of samples in the k-th class is Dk ,
and the probability of the k-th class is qk , the expression for
the Gini index is shown in Formula (1); while, the Gini index
expression for sample E is shown in Formula (2).

Gini(q) �
K∑

k�1

pk(1 − pk) � 1 −
K∑

k�1

p2k (1)

Gini(E) � 1 −
K∑

k�1

( |Dk |
|E |

)2

(2)

This study improves the Decision Tree CART algorithm
through parameter optimization. Parameter optimization
aims to minimize the objective function, enhancing the fit
between model output and actual data results to achieve
higher accuracy and reliability in the final recognition out-
come. To reduce interference from experimental sample
noise and further enhance recognition accuracy, this study
optimizes parameters related to the decision tree’s maximum
depth, internal nodes, leaf nodes, and minimum impurity
decrease for node splitting. These parameter settings are

designed to preventmodel overfitting and enhance the robust-
ness of the recognition model.

Grid Search CV (Grid Search Cross-Validation) is a com-
monly used parameter tuning method. It sequentially adjusts
parameters within specified ranges, traversing all possible
parameter combinations to train models and select the set
of parameters that yield the highest accuracy. This study
employs Grid Search CV for parameter optimization. How-
ever, since Grid Search CV requires traversing all parameter
combinations within the given range, it can consume a
considerable amount of time and computational resources,
especially when dealing with large datasets and numerous
parameters. Therefore, this study first conducts score curve
analysis for each parameter to identify the approximate opti-
mal parameter range. Subsequently, the Grid Search CV
method is used to determine the optimal parameter combina-
tion, achieving the recognitionmodel. This approach reduces
the computational burden and time cost of grid search while
improving the accuracy of device recognition to a certain
extent.

4 Experimental analysis

This research focuses on the recognition of smart homes
in WiFi environments. Due to the lack of publicly avail-
able datasets for mainstream Chinese brands such as Huawei
and Xiaomi, this study sets up a practical IoT environ-
ment for experimental analysis. The Decision Tree algorithm
is optimized to ensure data stability during training, and
the effectiveness of extracting data frame features is veri-
fied. Through parameter optimization, this work enhances
the Decision Tree CART method. To increase the accuracy
and dependability of the final recognition result, parameter
optimization seeks to minimize the objective function and
improve thefit between themodel output and real data results.
This work improves the decision tree’s maximum depth,
internal nodes, leaf nodes, and minimal impurity reduction
for node splitting to lessen interference from experimental
sample noise and improve identification accuracy evenmore.
These parameter configurations aim to keep the recognition
model more robust and avoid overfitting. One popular tech-
nique for fine-tuning parameters is Grid Search CV (Grid
Search Cross-Validation). To train models and choose the
combination of parameters that produce the best accuracy, it
iteratively modifies parameters within predetermined limits.

For parameter optimization, Grid Search CV is used in
this study. To determine the estimated ideal parameter range,
this study first analyzes the score curve for each parame-
ter. The best parameter combination is then found using the
Grid Search CV technique, which results in the recognition
model. With a little increase in device detection accuracy,
this method lessens the grid search’s computational load and
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Table 3 Data collection environment configuration

Configuration Parameter

virtual machine VMware Workstation 16

virtual machine operating system Kali Linux 2021.3a

raspberry pie Raspberry Pi 4

Raspberry Pi OS Kali Linux 2021.3 rpi4

Wireless network card ALFA RTL 8812AU

Python python3.9.0

time cost. The sniffer’s wireless port is configured in mon-
itoring mode. To capture all network traffic broadcast over
the air in the same channel of the WiFi network, the Linux
system’s aerodump terminal command is used to define the
channel, BSSID, duration, and other parameters. The two
sorts of captured data packets are those that occur during the
idle time after a smart home device’s WiFi connection and
those that occur during the live interactions between users
and smart home devices. As experimental data samples, data
are gathered for one hour during both the idle and interaction
phases, and recorded separately. cap files, and then analyzed.

4.1 Traffic data collection

The topology of the data collection setup is shown in Fig. 3. A
RaspberryPi and a virtualmachine on a laptopwith awireless
USBadapter are used to build a traffic sniffer for data capture.
The hardware and environmental configurations are detailed
in Table 3.

Specific information about the smart home devices used
in the experiment is presented in Table 4. The smart home
devices are connected to the test WiFi, and the network envi-
ronment is configured to keep the devices operational.

The wireless port of the sniffer is set to monitoring mode.
The aerodump terminal command in theLinux system is used
to specify the channel, BSSID, duration, and other parame-
ters, capturing all network traffic transmitted over the air in
the same channel of the WiFi network. Captured data pack-
ets are categorized into two types: packets during the idle

period after smart home devices connect to WiFi, and pack-
ets during real-time interactions between users and smart
home devices. Data are collected in both idle and interaction
periods for an hour each time, saved separately as.cap files,
serving as experimental data samples. Information regarding
these data samples is presented in Table 5.

4.2 Traffic feature processing

Experimental samples were collected interactively over one
hour, resulting in over 190,000 traffic data entries. The data
frame type was extracted using the frame control field, and
the traffic was classified and filtered by the Mac address of
the smart home devices. For each device’s traffic, features
such as frame length, frame interval time, frame arrival time,
duration, frame sequence number, frame type, frame subtype,
transmission direction, retransmission flag, QoS traffic iden-
tifier, and data length were extracted frame by frame. Some
features were subjected to normalization; the two directions
in the transmission direction field were normalized to 1 and
2, missing values in the data length field were set to 0, and
missing values in theQoS traffic identifier fieldwere set to 16.
The final feature representation consisted of feature vector
matrices for different devices.

After extracting data frame features, feature importance
was measured, and the feature ranking results are presented
in Fig. 4. It can be observed that features like retransmission,
type, and subtype have relatively low importance indica-
tors. Consequently, this study selects a subset of 8 features
comprising frame length, frame arrival time, duration, frame
sequence number, transmission direction, interval time, data
length, and QoS traffic identifier as the final feature set for
data frame recognition.

4.3 Algorithm parameter configuration

Based on the Decision Tree CART recognition algorithm,
parameters were set with a maximum depth single increment
of 10, and internal nodes and leaf nodes with a single incre-
ment of 1. The scores were computed for different parameter
values, and the score curves are plotted as shown in Fig. 5. In
the figure, the x-axis represents different parameter values,
and the y-axis represents the coefficient of determination S2

under that value, expressed as in Eq. (3):

S2 �
∑

i

(
x̂i − 1

n

∑n
i�1 xi

)2
∑

i

(
xi − 1

n

∑n
i�1 xi

)2 (3)

where x represents the actual result and x̂ represents the
model’s predicted result. S2 is a commonly used metric for
evaluating the goodness of fit of a model; the closer its value
is to 1, the better the model’s fit.
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Table 4 List of smart home
devices Serial number Device name Physical address Category

1 Fluorite C6P C0:E4:34:29:89:09 Camera

2 Fluorite C3W EC:9C:32:C5:7C:EA Camera

3 Fluorite C6CN D4:E8:53:05:89:BB Camera

4 Fluorite C6C EC:9C:32:A0:D4:E8 Camera

5 TP-Link IPC55a 7C:B5:9B:E2:D9:7F Camera

6 Hikvision Dome Camera 00:95:69:D0:49:3E Camera

7 Xiongmai Robot Camera 7C:A7:B0:4E:F4:2D Camera

8 Fluorite Doorbell DC:F5:05:F1:0E:8B Doorbell

9 360 Smart Doorbell B2:59:47:00:4E:1B Doorbell

10 Ding Zero Doorbell 90:E8:68:28:8B:79 Doorbell

11 Millet Doorbell EC:2E:98:22:94:7D Doorbell

12 Kim Jong Tv DC:29:19:64:8A:F8 Television

13 Haier TV Yunos 1C:30:08:67:DD:F5 Television

14 Konka TV 08:38:69:00:2E:48 Television

15 Kaidis Smart Door Lock F4:CF:A2:F0:67:6D Door Lock

16 Deschmann Smart Door Lock 70:3A:2D:2B:C1:D6 Door Lock

17 Huawei Speaker 78:85:F4:EC:D0:3C Speakers

18 Xiaoai Speaker 9C:9D:7E:A6:06:61 Speakers

19 Roborock Sweeping Robot S51 04:CF:8C:F8:D0:DC Sweeping Robot

20 Lumi Multimode Gateway 54:EF:44:20:0A:17 Gateway

Table 5 Information about data samples

State The amount of data File size/106

Stand still 4,935,057 1146.88

Interactive 1,978,838 275

From Fig. 5, it can be observed that the peak of the
score curve for the parameter “maximum depth” is around
370, with an R2 value of 0.958. This indicates that the
optimal parameter range for maximum depth is approx-
imately 360–380. The score curves for the parameters
“internal nodes” and “leaf nodes” show a general decreas-
ing trend. The preliminary optimal range for internal nodes
is around 2–5, and for leaf nodes, it’s around 1–5. Based
on these parameter ranges, a grid search was conducted
using GridSearchCV, resulting in the optimal parameter
set: {‘max_depth’: 376, ‘internal_nodes’: 2, ‘leaf_nodes’: 1,
‘min_impurity_decrease’: 0.0}.

4.4 Device recognition analysis

4.4.1 Smart homemodel recognition

The feature matrices of smart home devices were divided
into training and testing sets in a 7:3 ratio. A supervised

training was performed to generate the recognition model,
and the experimental results are presented in Fig. 6 with
Table 6. The average accuracy of recognizing 20 different
devicemodels from the dataset reached 91.3%, with recogni-
tion rates exceeding 85% for 17 device models. Additionally,
Table 7 shows a comparison between the test results when
frame types are not extracted and when data frame types
are extracted. The results indicate that extracting data frame
types significantly improves the accuracy of device model
recognition.

With a recall of 0.93, 93% of real-world abnormalities are
properly identified by themodel. The F1 score of 0.91, which
represents the harmonic mean of themodel’s recall and accu-
racy, serves as a summary of its effectiveness. The model has
a strong discriminative ability to distinguish outliers from
the overall population, as evidenced by the AUC-ROC value
of 0.94. With a precision level of 0.82, 82% of the time a
face prediction is accurate. The algorithm properly recog-
nizes 86% of real-world faces, according to a recall value of
0.86. Themodel’s overall effectiveness at recognizing human
faces is indicated by its F1 score of 0.84. Furthermore, the
AUC-ROC score of 0.90 indicates how well the model clas-
sified face occurrences. The model correctly identifies 89%
of all occurrences with an accuracy of 0.89. 86 percent of
the time, with an accuracy of 0.86, the outliers are, in fact,
outliers. With a recall value of 0.91, the model accounts for
91% of true outliers. The F1 score, which stands at 0.88, is an
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Fig. 4 Feature importance
measure

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frame length

Time of arrival

Duration

Frame sequence number

Transmission direction

Intervals

Data length

Qos identification

Subtype

Retransmission

attempt to balance recall and accuracy. A further indication
of the model’s capacity to differentiate abnormal from ordi-
nary data is its AUC-ROC of 0.92. The model successfully
recognizes 83% of the tested faces with an accuracy of 0.83.
Eighty percent of the examples with an accuracy rating of
0.80 are faces. Recalling 85% of real-world faces correctly,
the model has a 0.85 recall score.

4.4.2 Comparative analysis

The traffic data used in this study represents passive traffic
in a WiFi environment, which differs from the plaintext traf-
fic often examined in mainstream research. In reference [5],
the recognition of WiFi encrypted traffic using the duration
field was tested, yielding an accuracy of 62.2%. Reference
[10] utilized encrypted WiFi traffic, directly transforming it
into traffic images without extracting frame features. Mul-
tiple algorithms were combined to recognize specific IoT
device models, and the accuracy of the decision tree algo-
rithm was 78.1%. In contrast, this study achieved a device
model recognition accuracy of 91.3% using the proposed
method. Additionally, this study tested device type recog-
nition, and the comparative results are detailed in Table 8.
The proposed method enhances the recognition rate of IoT
devices, validating the effectiveness of extracting data frame
features and addressing the issue of smart home devicemodel
recognition in situations where router-specific information is
inaccessible due to environmental constraints.

In this experiment, due to limitations in the experimental
environment, only 20 different types of smart home devices
were tested. In future research, it is intended to apply the

method proposed in this study to a wider range of scenar-
ios. This would involve expanding the number of devices
in the training model, encompassing a greater variety of
types, brands, and models of IoT devices. This expansion
would help address the management challenges posed by
IoT devices and contribute to enhancing convenience in the
network space environment.

4.5 Discussion

The dataset’s 20 distinct devicemodels were recognizedwith
an average accuracy of 91.3%; 17 of the device models had
identification rates higher than 85%. The maximum depth
single increment of 10 and the single increment of 1 for inter-
nal and leaf nodes were the parameters selected based on the
Decision Tree CART recognition method. Score curves were
presented after the scores were calculated for various param-
eter values. For each device, feature vector matrices made
up the final feature representation. Following the extraction
of data frame features, the results of the feature ranking are
shown together with ameasurement of feature relevance. It is
noted that characteristics with relatively low relevance indi-
cations include retransmission, type, and subtype.

Because of this, the final feature set for data frame recog-
nition in this study consists of a subset of 8 features: frame
length, frame arrival time, duration, frame sequence number,
transmission direction, interval time, data length, and QoS
traffic identifier. Over 190,000 traffic data entries were pro-
duced via interactively gathering experimental samples over
one hour. The trafficwas categorized and filtered based on the
Mac address of the smart home devices, and the data frame
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Fig. 5 Scoring curve

(a) Score Curve for Maximum Depth

(b) Score Curve for Internal Nodes

(C) Score Curve for Leaf Nodes
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Fig. 6 Different models of device recognition accuracy

Table 6 Different models of device recognition accuracy

Device Accuracy

Fluorite C6C 0.8

IPC55a 0.7

Hikvision camera 1

Xiongmai camera 0.9

Fluorite doorbell 0.95

360 smart doorbell 0.85

Ding zero doorbell 0.9

millet doorbell 0.86

kim jong TV 0.84

Haier TV 0.88

Konka TV 0.84

Cadiz door lock 0.82

Deschmann door lock 0.9

Huawei speaker 0.93

Xiaoai speaker 0.81

Sweeping robot 0.83

Green Rice Gateway 0.82

type was retrieved using the frame control field. Frame by
frame, information about each device’s traffic was retrieved,
including the QoS traffic identity, transmission direction,
frame type, frame subtype, frame length, frame interval time,
frame arrival time, duration, frame sequence number, and
transmission type.

Table 7 Comparison of recognition with and without data frame type
extraction

Frame type Accuracy Recall rate F1-Score

All frames 79 79.4 79.2

Data frame 91.3 91.3 91.3

Normalization was applied to a few characteristics; the
two directions in the transmission direction field were set
to 1 and 2, and the missing values in the data length and
QoS traffic identification fields were set to 0 and 16, respec-
tively. With an R2 value of 0.958, it can be seen that the
parameter “maximum depth” has a peak on the score curve
of about 370. This suggests that about 360–380 is the ideal
parameter range for the greatest depth. A general declining
tendency can be seen in the score curves for the parameters
“internal nodes” and “leaf nodes.” For internal nodes, the
preliminary ideal range is around 2–5, while for leaf nodes,
it is approximately 1–5. To identify certain IoT device types,
many algorithms were merged; the decision tree algorithm’s
accuracy was 78.1%. On the other hand, this study used
the suggested strategy to obtain 91.3% accuracy in device
model recognition. This study also evaluated the recognition
of device type, and the comparison outcomes are presented in
detail. By improving the recognition rate of IoT devices, the
suggested approach validates the efficacy of obtaining data
frame attributes and solves the problem of smart home device
model recognition when environmental restrictions prevent
access to router-specific information.
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Table 8 Comparison of
evaluation indicators Recognition result traffic data

set
Adapting methods Accuracy Recall

rate
F1-score

Device specific
model

Literature
[10]

Literature [10] (DT) 78.1 78.3 78.4

Proposed
Work

Literature [5] (DT) 62.2 37.3 40.1

Literature [10] (DT) 86.8 90.4 88.6

The method in this
paper

91.3 91.3 91.3

Device specific
type

Proposed
Work

The method in this
paper

88.2 87.1 87.7

5 Conclusion

This paper introduced a smart home device recognition
method based on 802.11 data frame features in a WiFi envi-
ronment, enabling the identification of smart home device
models. The primary contributions of this research are as
follows: it introduced a data frame feature set suitable for
smart home device recognition in WiFi environments and
improved the recognition algorithm using the Decision Tree
CART approach. Furthermore, practical experiments were
conducted within a real smart home environment to validate
the proposedmethod. The study demonstrated the applicabil-
ity of this method to commonly used domestic smart home
devices, achieving a device model recognition accuracy of
91.3%. In the future, we expect to widen our horizons by
incorporating machine learning into a mobile application to
identify photographs obtained by the camera and tell the user
of the specific identification of the photographed object. The
technique given in this paper may also be used for secu-
rity systems in big communities such as smart cities, office
buildings, hotels, shopping malls, and university settings to
improve the security system of the unique environment. It is
also claimed that machine learning makes prediction easier.
Machine learning may also be used to anticipate weather and
house conditions in the environmental module of smart home
automation. By carrying out research on usability, attend-
ing to computing efficiency, and taking deployment issues
into account, models may be optimized for real-world situa-
tions and useful insights can be gained into practical matters.
Sustained investigation and advancement within this domain
may augment the safety, confidentiality, and general user
experience inside smart home settings.
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